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ON SINPLE WAVES I# AN ELASTIC-IDEAL PLASTIC MEDIUH* 

D.B. BALASHOV and YA.A. KAMENYARZH 

Elastic-plastic flow is described by a non-linear hyperbolic 111 system 
of equations and an inequality (non-negativity of the factor in the 
associated law) that is the loading condition. There are overturning 
waves among the simple waves (SW) of this system of equations. However, 
only those SW that are not overturning satisfy the loading condition. 
This fact is known for the case when Hooke's law for elastic deformation 
and the Mises flow criterion /2/ are assumed; its foundation 
substantially utilized these particular properties. The absence of SW 
overturning is established below for a body with an arbitrary smooth 
flow surface and linear anisotropic elasticity. In this case jumps do 
not occur from the elastic-plastic SW, which indicates the possibility 
of solving the problem of the decay of an arbitrary discontinuity 
without the insertion of jumps of any new kinds that require the search 
for additional conditions. 

F~~~at~o~ of the problem and of the result. Simple waves, solutions of the form u(%(z, 

Q) I are considered for the system of quasilinear equations 
A (q) au/r% + B (II) &:8x = 0 

(A,B are matrices, and u is the vector of the unknowns). The necessary and sufficient con- 
dition for the existence of SW is that the characteristic equation 

d&(-d (u)C+ B (u)) = 0 (1) 

should have a real root c(u). If c(u) is such a non-multiple root and f(u) is a non-zero 
solution of the system (-AC+ B)f-0, then a simple wave is found as the solution of the 
equations 

&J/&J = f (u (%)), aeiat = ---C (u (8)) 8%:&z (2) 

The first group of these relationships can, in principle, be integrated. Let u (%, u,) be 
its solution (u@ is a constant vector). Then the change of all the quantities u in the SW is 
determined by the evolution of the parameter e@,t). In conformity with the last of Eqs.(2), 
the initial value %(~,f~)= B,(Z) goes over into a constant velocity e (a (%@. no)) in time. 

If the derivative &/de= (~c/~)f(u(6) is non-zero, then unlimited growth of derivatives of 
the solution can occur in the SW (overturning of the SW). The inequality 

(de/de) c%/~s < 0 (3) 
is the overturning criterion for SW propagating to the right (C&O), 

Therefore, for dc/dfJ+O the SW of the system of equations under consideration with 
either growing or decreasing initial profile %o @) are certainly overturned. The situation 
is otherwise with elastic-plastic SW. Besides the system of equations they must satisfy the 
inequality, the loading condition. It it is not satisfied for a certain SW of the system of 
plastic flow equations, then this SW is not a solution of the elastic-plastic problem. In that 
case the initial data evolve in conformity with the eqUations of elasticity theory (Unloading 
occurs). 

The loading condition is for the selection of SW of the system of plastic flow equations 
that have a mechanical meaning. In the case of an isotropic body with a Mises flow surface 
the inequality (3) is not satisfied for SW selected using it /21. In other words, in this 
case the elastic-plastic SW do not overturn. It is clarifiedbelow that for the same reason 
there is no overturning Of elastic-plastic SW for a considerably broader class of bodies also. 

An elastic-ideal plastic body is considered with an arbitrary smooth flow surface ,u(aij)= 
0 and its associated flow law. As usual the function F is assumed to be convex; the domain of 
elastic behaviour in the space of the stresses ui, 
F (0) < 0. The law eij = A~~~>E~~~, E$ = Bijh.!uh.[ 

is determined by the inequality F(Q)<%, 
is taken for the elastic strains. The constant 

elastic moduli possess the symmetry properties 
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The elastic-plastic flow of such a body is described within the framework of the geo- 
metrically linear theory by a system /3, 4/ of equations (x' are Cartesian coordinates, I., 
are velocity components, p0 is the density and I',j I ilF!~o,j) 

and the inequality (loading condition) 
<Ii;/ dl : 0 

it is later established that plane elastic-plastic SW do not overturn for such a body. 

PZans SW. The last of relationships (5) can be replaced by the equivalent equation 1~'~~ &Jij/ 
at = 0 if the initial data satisfy the condition p(oij)= 0. Using this equation, we find an 
expression for ahiat from the convolution of the second of the relationships (5) with F,) 
By using it, system (5), (6) is reduced to the form 

pDaui/at S devoid.&, qj/at = Lijk,e,., eij = ljl (a~~/& + 3ujla2 i, 
dhjat .= a-‘ii,,,nttper,3nFpq >, 0, #,=-A 

abcdFabFcd 

Here the quantities 
f, ‘lb1 i AijKi - ~-‘d,j~pFpqd~lrsPrs (7) 

possess symmetry properties analogous to (4) (all the subscripts run through the values 1, 2, 
3). 

We obtain the following equation for plane SW of this system, i-e., solutions dependent 
on 0 (~,t),s=z', (the prime denotes the derivative with respect to 0) 

We eliminate the stress from the first equation (by using the second) 

(- pI,c2~,j - Bij)" .' :~- u, ./ Bt j x L*ljl 

Together with the remaining relationships of (8) it comprises a system describing elastic- 
plastic SW. The characteristic Eq.(l) has the following form in the case under consideration: 

det (-@1 -I- 0) == r) 

Let us mention one relationship utilized later to investigate SW overturning. 
L)erivatives of the ei~enn~er of a symmetric matrir with respect to its components. We 

consider a symmetric matrix with the components aij- Let Ls be its eiqenvalues, wli the ortho- 
normalized set of its eigenvectors, and wh-) (t= 1.2.3) the components of the vector ",; (the 
subscripts run through the values 1, 2, 3). 

Let f be a function of the symmetric matrix U. Its derivative with respect to u is the 
symmetric matrix ltj' (a) in the expression of the principal linear part of the increment 

! (a + h) -f (a) L fij’ (a) Ihj i- 0 (h) 

(h is an arbitrary symmetric matrix). If the function f is continued in the set of all 
matrices by the relationship 

f (a) = ,f (a i 2 + .T ! 2) 

where the superscript T denotes the transpose, then the following equality holds: 

In the case of the symmetric matrix Q the right-hand side obviously equals fii'(af- In this 
connection, the derivative fij' (4) is later denoted by a?iaaij+ 

The following formula holds (here and in the next two relationships there is no summation 
over k!): ahkiaazj = mIiiwk, (9) 

It is obtained by differentiating the equality h.; = UJ~,~,,,,I+, taking the relationship 

into account, 
(Jwkmldaij)a,,,RWXn + Wk,,,alnnawRn!aaij = A, Calauij) (WknWkn) 30 

Absence of SW overturning. For waves propagating to the right (c>,O), the necessary 

and sufficient condition for overturning (3) can be represented in the form 

&$ i mt W.CJs < 0 SO) 



We will show that it is sometimes not satisfied for the 
sideration. We will find the first factor as the derivative 

dpd d:W’ 2, ha 
ati.. 3F.s , 

x6- := i3Bij OF,, $0 i’rnn 
,,,?I 
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elastic-plastic SW under con- 
of the complex function 

Here Bij = Liljl are components of a symmetric matrix. Its derivative with respect to 
Fh.l is evaluated taking (7) into account,while the derivative of its eigenvalue pOC with 

respect to Bil is evaluated by means of (9) using the eigenvector u'// ~1'1. We therefore 
obtain the expression 

for their convolution. 
The last equality is obtained by using the relationships (8). Substituting it into (11) 

we find 

and the expression on the left-hand side of (10) equals .QHh'z@/at=2cH@Jai. 
By virtue of the convexity of the function F, the quantity H is non-negative while the 

inequality ah&>0 is the loading condition satisfied during plastic flow. Therefore, Con- 
dition (10) is not satisfied and, hence, the elastic-plastic SW for the class of bodies under 
consideration do not overturn. 
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